skip to main content


Search for: All records

Creators/Authors contains: "Redshaw, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Step-based tutoring consists in breaking down complicated problem-solving procedures into individual steps whose inputs can be immediately evaluated to promote effective student learning. Here, recent progress on the extension of a step-based tutoring for linear circuit analysis to cover new topics requiring complex, multi-step solution procedures is described. These topics include first and second-order transient problems solved using classical differential equation approaches. Students use an interactive circuit editor to modify the circuit appropriately for each step of the analysis, followed by writing and solving equations using methods of their choice as appropriate. Initial work on Laplace transform-based circuit analysis is also discussed. Detailed feedback is supplied at each step along with fully worked examples, supporting introductory multiple-choice tutorials and YouTube videos, and a full record of the student's work is created in a PDF document for later study and review. Further, results of a comprehensive independent evaluation involving both quantitative and qualitative analysis and users across four participating institutions are discussed. Overall, students had very favorable experiences using the step-based system across Fall 2020 and Spring 2021. At least 48% of students in the Fall 2020 semester and 60% of students in the Spring 2021 semester agreed or strongly agreed with all survey questions about positive features of the system. Those who had used the step-based system and the commercial MasteringEngineering system preferred the former by 69% to 12% margins in surveys. Instructors were further surveyed and 86% would recommend the system to others. 
    more » « less
  2. Step-based tutoring consists in breaking down complicated problem-solving procedures into individual steps whose inputs can be immediately evaluated to promote effective student learning. Here, recent progress on the extension of a step-based tutoring for linear circuit analysis to cover new topics requiring complex, multi-step solution procedures is described. These topics include first and second-order transient problems solved using classical differential equation approaches. Students use an interactive circuit editor to modify the circuit appropriately for each step of the analysis, followed by writing and solving equations using methods of their choice as appropriate. Initial work on Laplace transform-based circuit analysis is also discussed. Detailed feedback is supplied at each step along with fully worked examples, supporting introductory multiple-choice tutorials and YouTube videos, and a full record of the student's work is created in a PDF document for later study and review. Further, results of a comprehensive independent evaluation involving both quantitative and qualitative analysis and users across four participating institutions are discussed. Overall, students had very favorable experiences using the step-based system across Fall 2020 and Spring 2021. At least 48% of students in the Fall 2020 semester and 60% of students in the Spring 2021 semester agreed or strongly agreed with all survey questions about positive features of the system. Those who had used the step-based system and the commercial MasteringEngineering system preferred the former by 69% to 12% margins in surveys. Instructors were further surveyed and 86% would recommend the system to others. 
    more » « less
  3. Contribution: A new operational definition of series connections is given based on elements belonging to the same two meshes, which is properly dual to the usual definition of parallel elements being connected to the same two nodes. Furthermore, computer-based exercises have been developed and tested to teach students about such connections in gateway linear circuits courses, using color coding of nodes and meshes as a pedagogical device. Background: Series and parallel connections are a crucial but difficult concept. Existing textbooks give them limited attention, resulting in later difficulties learning circuit analysis. Research Questions: RQ1: Can an improved definition of series elements aid student understanding and student satisfaction? RQ2: Can a computer-based ``game'' lead to effective mastery and student satisfaction at a wide range of institutions, including minority-serving ones? Methodology: Standard and new definitions were elaborated in a multiple-choice tutorial. A game was developed focusing on identifying series and parallel connections, with color coding of both nodes and meshes. Student learning was assessed over eight years using pretest and posttest in 14 varied institutions. Student opinions were assessed using several types of surveys. Findings: Strong learning gains were observed every semester from built-in pretest and posttest, with average scores of 28% and 87%, respectively. Large improvements were observed at every institution including five minority-serving ones. The posttest score is increased by a statistically significant amount after introducing the new definition of series elements. Students preferred the new definition of series and recommended its use, and very strongly endorsed color coding. 
    more » « less
  4. Step-based tutoring systems are known to be more effective than traditional answer-based systems. They however require that each step in a student’s work be accepted and evaluated automatically to provide effective feedback. In the domain of linear circuit analysis, it is frequently necessary to allow students to draw or edit circuits on their screen to simplify or otherwise transform them. Here, the interface developed to accept such input and provide immediate feedback in the Circuit Tutor system is described, along with systematic assessment data. Advanced simplification methods such as removing circuit sections that are removably hinged, voltage-splittable, or current-splittable are taught to students in an interactive tutorial and then supported in the circuit editor itself. To address the learning curve associated with such an interface, ~70 video tutorials were created to demonstrate exactly how to work the randomly generated problems at each level of each of the tutorials in the system. A complete written record or “transcript” of student’s work in the system is being made available, showing both incorrect and correct steps. Introductory interactive (multiple choice) tutorials are now included on most topics. Assessment of exercises using the interactive editor was carried out by professional evaluators for several institutions, including three that heavily serve underrepresented minorities. Both quantitative and qualitative methods were used, including focus groups, surveys, and interviews. Controlled, randomized, blind evaluations were carried out in three different course sections in Spring and Fall 2019 to evaluate three tutorials using the interactive editor, comparing use of Circuit Tutor to both a commercial answer-based system and to conventional textbook-based paper homework. In Fall 2019, students rated the software a mean of 4.14/5 for being helpful to learn the material vs. 3.05/5 for paper homework (HW), p < 0.001 and effect size d = 1.11σ. On relevant exam questions that semester, students scored significantly (p = 0.014) higher with an effect size of d = 0.64σ when using Circuit Tutor compared to paper HW in one class section, with no significant difference in the other section. 
    more » « less